

Cryptographic constraints for Smart Security Devices' application

June 2008

<u>Foreword</u>

Smart Security Industry needs to have a clear overview on the level of security required for cryptographic mechanisms in the next 'x' years. Such information is not only mandatory for the silicon vendors to anticipate hardware availability for any market request , but also to card manufacturers and all other players who are involved in the security business and want to be state of the art technology wise. However, many voices exist that are sometimes not consistent: academic, governmental institutions, private organizations...

The goal of this document is to provide an overview on the cryptographic mechanisms specified today in the main smart security devices applications to compare with the recommendation of the different governmental institutions, and to provide some recommendation to the Smart Security industry about how to move on.

1. Cryptographic robustness

Cryptographic mechanisms are tools which aim assuring confidentiality, integrity, authenticity and non-repudiation of information. These security properties are maintained along with the robustness of the cryptographic algorithm.

Due to major developments in cryptographic science and the increasing calculation capacities of computers, this robustness evolves in time. An implementation that is considered as secure today may be cracked tomorrow.

Some governmental institutions have published recommendations on cryptographic mechanisms usage, mainly in terms of algorithm to use and associated cryptographic keys length.

Sometimes it is difficult for developers to get to the right information and know what implementation is still considered as secure and for how long.

Indeed a very useful site is http://www.keylength.com/

This web site implements mathematical formulas and summarizes reports from wellknown organizations, allowing the developer to find the appropriate key length for desired or required level of protection.

Detailed reports are available from the following governmental public websites.

- In France, DCSSI has published cryptographic recommendations for a standard robustness certification level. <u>http://www.ssi.gouv.fr/fr/politique_produit/catalogue/pdf/mecanismes_cryptographiq</u> <u>ue_v1_10_standard_uk.pdf</u>
- In Germany the Federal Network agency provides recommendation for electronic signature (but in German only)
 http://www.bundespetzagentur.do/media/archive/12108.pdf
 - http://www.bundesnetzagentur.de/media/archive/12198.pdf
- The BSI provides recommendation for eCard projects (mainly health cards): <u>http://www.bsi.de/literat/tr/tr03116/BSI-TR-03116.pdf</u>
- In the USA, the NIST Computer Security Resource Center (CSRC) provides recommendation also for key management and hash functions <u>http://csrc.nist.gov/groups/ST/toolkit/index.html</u> <u>http://csrc.nist.gov/groups/ST/hash/index.html</u>

These documents provide an extract of rules and recommendations for implementation. Not all details are described in this document. It is recommended for users to read the originally documents. This should be checked in detail by developers before implementation.

2. Cryptographic standard used for smart cards

The table below presents the algorithms, blocks and key size used today in different standards.

Application type	Algorithms	Key length
Bank (EMV) SDA	3DES – CBC mode	112 bits (64 bits blocks)
	3DES – ECB mode	112 bits (64 bits blocks)
Bank (EMV) DDA	3DES- CBC	112 bits (64 bits blocks)
	3DES – ECB mode	112 bits (64 bits blocks)
	SHA-1	160 bits
	RSA	1024 to 1984 (modulo 8)
Signature (e-Sign)	3 DES–CBC mode	112 bits (64 bits blocks)
	RSA	1024 to 2048 (modulo 8)
	SHA-1, RIPEMD-160	160
	SHA-224, SHA-256, SHA-384	224, 256, 384
	Diffie-Hellman (for key	
	agreement)	_
ID cards (IAS)	3DES-CBC mode	112 bits (64 bits blocks)
	RSA	1024, 1536, 2048 bits
	SHA-1	160 bits
	SHA-256	256 bits
	Diffie-Hellman (for key	200 510
	agreement)	—
e-passport BAC	3DES-CBC	112 bits (64 bits blocks)
	Retail MAC (DES)	112 bits (64 bits blocks)
	SHA-1	160 bits
e-passport EAC	3DES-CBC mode	112 bits (64 bits blocks)
	Retail MAC (DES)	112 bits (64 bits blocks)
	SHA-1	160 bits
	SHA-224	224 bits
	SHA-256	256 bits
	RSA	1024 to 2048 (modulo 8)
	Diffie-Hellman or Elliptic Curves	
	(for key agreement)	—
Health	RSA	1024 to 2048 (modulo 1)
	SHA-1	160 bits
	SHA-256	256 bits
	3DES Retailed MAC	112 bits (64 bits blocks)
	3TDES	168 bits
Java Card 2.2.1	3DES	112 bits (64 bits blocks)
	RSA	1024 to 2048 bits
	AES	128,192,256 (block of 128
		bits)
	RIPDEM160	/
	SHA-1	160 bits
		160 bits

Note that future updates of standards will recommend replacing DES by AES as soon as possible

3. Governmental institutions recommendation

The following tables summarize what can be found about keys length and limitation of usage for applications to be certified by DCSSI (France), BSI/BNA (Germany) and NIST (USA)

France DCSSI: Standard level

Cryptographic Primitive	Minimum Key/Parameter Size	Expiration Date
Symmetric Keys	80 bits	2010
Symmetric Keys	100 bits	
Symmetric Encryption Block	64 bits	
RSA modulus	1536 bits	2010
RSA modulus	2048 bits	2020
RSA secret exponent	Same size as modulus	
RSA public exponent (encryption)	2 ¹⁶ +1	
DL over GF(p) : prime p	1536 bits	2010
DL over GF(p) : prime p	2048 bits	2020
DL over $GF(2^n)$: integer n	2048 bits	2020
DL : order of subgroup : prime q	160 bits	2010
DL : order of subgroup : prime q	256 bits	
ELC over GF(2 ⁿ) : integer n	prime n	
ELC : order of subgroup : prime q	160 bits	2010
ELC : order of subgroup : prime q	256 bits	
Hash function digest (SHA)	160 bits	2010
Hash function digest (SHA)	256 bits	

Germany BSI/BNA recommendation for electronic signature

Function	Algorithm	Key size in bits	Recommendation
Hash	RIPDEM160	160	<=2010
	SHA-1	160	<= 2007
			<= 2009 for
			generation of
			qualified signatures
			<= 2014 for
			verification of
			qualified certification
	SHA- 224,SHA-256,	224, 256	<=2014 and after
	SHA-384, SHA-512	384, 512	

Function	Algorithm	Key size in bits	Recommendation
Asymmetric	RSA	1024	<=2007 ¹
		1280	<=2008
		1536	<=2009
		1728	<=2010
		1976	<=2014
		2048	Recommended
	DSA	p:	
		1024	<=2007
		1280	<=2008
		1536	<=2009
		2048	Recommended for >
		q:	2009
		160	
		224	<=2009
			Recommended for
			>2009
	DSA based on	p:	
	groups E(F _p) – EC	192	<=2009
		q:	
		180	<=2009
		224	<=2014
	DSA based on	m:	
	groups E(F ₂ ^{III}) – EC	191	<=2009
		q	
		180	<=2009
		224	<=2014
Random number	TRNG	Class P2 hoch	>=2011
	PRNG	Class K3 with 80 bit	
		seed (100 bit	
		recommended)	<2009
		Class K4 with 100	
		bit seed (120 bit	
		recommended)	>=2010

Germany BSI recommendation for eCards (health cards)

Function	Algorithm	Key size in bits	Recommendation
Hash	SHA-1		<=2007
	RIPEMD-160	160	<=2009
	SHA- 224,SHA-256,	224, 256	
	SHA-384, SHA-512	384, 512	<=2013
Asymmetric	RSA	1024	<=2007
		1976	<=2013
		2048	<=2013
	DSA	p:	
		1024	<=2007
		2048	<=2013
		q:	
		160	<=2007
		224	<=2013
	DSA based on groups	q:	

¹ A transission period is defined until March 2008, where RSA with 1024 bit keys may be used.

Function	Algorithm	Key size in bits	Recommendation
	$E(F_p) - EC$	160	<=2007
		224	<=2013
Symmetric	2TDES		<=2009
	3TDES		<=2013
	AES-128		
	AES-192		
	AES-256		<=2013
Random number	TRNG	P2 hoch	
	PRNG	K3 hoch	

NIST recommendations

Function	Algorithm	Key size in bits	Recommendation
Hash	SHA-1	160	Not recommended
	SHA-224, 256, 384,512	224,256,384, 512	
Symmetric crypto	2 TDEA	80,	Until 2010
	3 TDEA	112,	Until 2030
		128	After 2030
	AES	128	Highly
			recommended
Asymmetric	RSA	1024	Until 2010
crypto		2048	Until 2030
		3072	After 2030
Key agreement	DH or elliptic curves	_	
Random number	TRNG		True random
generation	PRNG		Pseudo Random
-	NRBG		Non deterministic
			random bit generator

4. Conclusion

Even if all institutions do not present exactly the same results, we can see clearly the trends of recommendations

- For Symmetric types, 3DES is limited to a 64 bit block and should be replaced as soon as possible by **AES** that offers larger size blocks of 128.

- For Asymmetric types, RSA keys should go also to 2048 bit key length.

- For hash functions SHA-1 is no longer welcome, and for long term security it should be replaced at by at least SHA-224, but switching directly to SHA-256 is easier for developers.

Developers should also be careful about the standard chosen for Random Number Generation as in this area the rules are different from one government to another (AIS31, AIS20).

5. Glossary

3 DES	Triple DES
2TDES	Triple DES with key length of 128 bit
3TDES	Triple DES with key length of 192 bit
AES	Andvanced Encryption Standard
AIS	Anwendungshinweise und Interpretationen zum Schema
AIS20	Fuktionalitätsklassen und Evaluationsmethodologie für deterministische Zufallszahlengeneratoren
AIS31	Fuktionalitätsklassen und Evaluationsmethodologie für physikalische Zufallszahlengeneratoren
BNA	Bundesnetzagentur für Elektrizität, Gas, Telekommunikation, Post und Eisenbahnen
BSI	Bundesamt für Sicherheit in der Informationstechnik
CBC	Cipher Block chaining
DES	Data Encryption Standard
DCSSI	Direction Central de la Sécurité des systèmes d'Information
DH	Diffie Hellman key agreement scheme
DL	Discrete algorithm
DSA	Digital Signature Algorithm
ELC	Elliptic curves
NIST	National Institute of Standards and Technology
NRBG	Non Deterministic Random Bit Generator
TRNG	True Random Number Generator
TDEA	Triple Date Encryption Algorithm (AES, 3DES)
PRNG	Pseudo Random Number Generator
RSA	Rivest-Shamir-Adleman
SHA	Secure Hash Algorithm

Eurosmart is an international non-profit association located in Brussels and representing 25 companies of the smart security industry for multi-sectors applications. Founded in 1995, the association is committed to expanding the world's smart secure devices market, developing smart security standards and continuously improving quality and security applications.

Manufacturers of smart cards, semiconductors, terminals, equipment for smart cards system integrators, application developers and issuers gather and work into dedicated working groups on communication and marketing, security, electronic identity and new form factors, and prospect emerging markets. Members are largely involved in political and technical initiatives as well as research and development projects at the European and international levels

Eurosmart is acknowledged as representing "the Voice of the Smart Security Industry".

More information: www.eurosmart.com

EUROSMART Rue du Luxembourg 19-21 B-1000 Bruxelles Tel. (+32) 2 506 88 38/ Fax. (+32) 2 506 88 25 Email : <u>eurosmart@eurosmart.com</u>